

Application Note YSI, a Xylem Brand • XA00078

Determination of Peroxide Value (POV) in fats and oils

FOOD & BEVERAGE SERIES

Introduction

The Peroxide number (POV) is indicator for the state of unsaturated oils and fats. Unsaturated oils and fats become rancid by oxidation, forming peroxides.

The determination of the POZ is done by titration with sodium thiosulfate after reaction of the sample with potassium iodide, wherein the iodide is oxidized by the peroxides to iodine. The solvent used for the sample is a mixture of glacial acetic acid and chloroform. Depending on the sample, it is also possible to use decanol or hexanol instead of chloroform. The POV is calculated as mmol_{peroxide}/kg.

 $R-OOH + 21^{-} \rightarrow R-OH + I_{2}$

$$I_2 + 2 S_2 O_3^{2-} \rightarrow 21^{-} + S_4 O_6^{-2}$$

a xylem brand

Instrument

TL 7000 or higher

Magnetic stirrer TM 235 or similar

WA 10 Exchange Unit

Electrode, Cable, and Electrolyte

Pt 62 oder Pt 61

L 1 A Cable

Lab Accessories

Erlenmeyer flask 100 ml with stopper Magnetic stirrer bar 30 mm

	Reagents	
1	Sodium thiosulfate 0.01 mol/l (for very low POV 0.001 mol/l)	
2	Potassium Iodide	
3	Glacial acetic acid	
4	Chloroform (depending on the sample Decanol or Hexanol are also possible)	
All reagents should be in analytical grade or better.		

Procedure

Reagents

The titer determination of the $Na_2S_2O_3$ - solution is carried out as described in the application report "Titer determination of $Na_2S_2O_3$ ".

Solvent mixture

600 ml glacial acetic acid are mixed with 400 ml chloroform.

Potassium iodide solution

10g of Potassium iodide are dissolved in 13g distilled water. The KI solution should be prepared fresh each day.

Cleaning of the electrode

The electrode is rinsed with distilled water and, if necessary, with solvent. The electrolyte solution L300 is suitable for storage.

Blank Value

To determine the blank value, 30 ml of solvent mixture are placed in a 100 ml Erlenmeyer flask and 0.5 ml of Kl solution are added. The flask is closed and the mixture is stirred for 60 sec. Subsequently, 30 ml of dist. Water are added and titrated with sodium thiosulfate.

vsi

Sample Preparation

Approximately 1 g of sample is weighed into a 100 ml Erlenmeyer flask and dissolved in 30 ml of solvent mixture. 0.5 ml of Kl solution are added. The flask is closed and the mixture is stirred for 60 sec. Subsequently, 30 ml of distilled water is added and titrated with sodium thiosulfate to an equivalence point.

Titration parameter - Blank Titration

Default Method					
Method type	Automatic titration				
Modus	Linear				
Measured Value	mV				
Measuring Speed / Drift	Individual	Minimum Holding Time	04 s		
		Maximum Holding Time	15 s		
		Measuring Time	03 s		
		Drift	10 mv/min		
Initial Waiting Time	5 s				
Linear Steps	0.004 ml				
Damping	None	Titration Direction	Decrease		
Pretitration	off	Delay Time	0 s		
End Value	off				
EQ	On (1)	Slope Value	120		
Max. Titration Volume	0.2 ml				
Dosing Speed	100%	Filling Speed	30 s		

Calculation: ml = EQ1

The result is saved in a global memory, e.g. M01. We recommend to use statistics = 3.

Default Method					
Method type	Automatic titration				
Modus	Dynamic				
Measured Value	mV				
Measuring Speed / Drift	Individual	Minimum Holding Time	04 s		
		Maximum Holding Time	15 s		
		Measuring Time	03 s		
		Drift	10 mv/min		
Initial Waiting Time	5 s				
Dynamic	Average	Max step size	1.0 ml		
		Slope max ml	10		
		Min. step size	0.02 ml		
		Slope min. ml	120		
Damping	None	Titration Direction	Decrease		
Pretitration	off	Delay Time	0 s		
End Value	off				
EQ	On (1)	Slope Value	120		
Max. Titration Volume	5 ml				
Dosing Speed	100%	Filling Speed	30 s		

Calculation:

POV =

В	M01	Blank value, saved in global Memory M01
EQ1		Consumption of titrant until first Equivalence point
Т	WA	Actual concentration of the titrant
Μ	1	Molecular weight
W	man	Sample weight in g
F1	1000	Conversion factor
F2	1	Conversion factor

YSI, a Xylem brand 1725 Brannum Lane Yellow Springs, OH 45387 +1.937.767.7241titration.ysi@xyleminc.com

TitroLine® is a registered trademark of Xylem or one of its subsidiaries. © 2019 Xylem, Inc. XA00078 0320 YSI.com